
*AD-A245 921

0 An Analysis of the Stress Wave
in Solids (SWIS) Finite Element Code
Karen J.L. Faran November 1991

DTIC
EJ.YCTEQ FED06 19920

a D

aIh~

i ne ILL



For conversion of SI metric units to U.S./Bltish customary units
of measurement consult ASTM Standard E380, Metric Practice
Guide, published by the American Sociely for Testing and
Materials, 1916 Race St., Philadelphia, Pa. 19103.

This report Is printed on paper that contains a minimum of
50% recycled material.



Special Report 91-21

U.S. Army Corps
of Engineers
Cold Regions Research &
Engineering Laboratory

An Analysis of the Stress Wave
in Solids (SWIS) Finite Element Code
Karen J.L. Faran November 1991

Accesion For ........ ..-... -!'
NTIS CRA&I

DTIC TAB

JL,-ytficat1o1 I

Di "t it) tI, I 1

92 2 05 024
Prepared for
OFFICE OF THE CHIEF OF ENGINEERS 92-02945
Approved for public release; distribution Is unlimited. 1.Uj 11 Ig Ih 0



PREFACE

This report was prepared by Captain Karen J.L. Faran, Research and Development Coordinator,
Applied Research Branch, Experimental Engineering Division, U.S. Army Cold Regions Research
and Engineering Laboratory.This work was funded by the Directorate of Research and Dzvelopment,
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An An alysis of the Stress Wave in Solids (SWIS)
Finite Element Code

KAREN J.L. FARAN

INTRODUCTION

The ability to analyze wave propagation for geometrically complex circumstances is important in
calculating ground motion caused by earthquakes, explosions or other sources of seismic waves.
Analytical models derived using separation of variables methods are limited in this area because they
can only solve problems with sinple geometry. For more complex situations, it is necessary to use
finite elem nt or finite difference sche;nes.

In 1973, Frazier (1974) developed the finite element code Stress Waves In Solids, or SWIS. It has
been used to solve several challenging problems because it includes a variety of seismic propagation
modes, including body waves, interface waves and diffraction. SVIIS is able to simulate a number of
seismic ptnenomena. Some examples are:

1. Explosions in geologically complex formations.
2. Spontaneous earthquake ruptures and near-field ground motions.
3. Disturbances in lateraily varying earth models.
4. Wave propagation through buried and s urface structures.

SVIS is a versatile code in that it can solve problems in one, t xoorthree spatial dinensions in either
Cartesian or cylindrical coordinates. Although the code assumes lir,ar elasticity and isotropic
materials, it is possible to solve problems in regions containing up so nine material ypes. The grid
generator has a feature in which the grid size may be progressive-ly expanded at 10% per zone to
simulate a non-reflecting boundary. Finally, SWIS can solve :ither static, diffusion or wave
propagation problems.

This report describes how to use the SWIS code, which was upgraded at the Center for Seismic
Studies in 1985. (The upgrade was annotated in the code.) First, it desci bes how to create the input
file. A discussion of the output files follow. Finally, examples of how SWI"' was used to solve three
wave propagation problems are discussed.

PROBLEM INITIALIZATION

The numerical algorithm in the SWIS code t antains features from both finito clement and finite
difference methods. The continuum is divided, using sp: ial interpo!ation functions and a virtual work
principle, but the sequence is modeled after Langrangia.i finite difference shock codes. Also, tho.SWIS
code directly computes strain rate, stress and restoring tcrces instead of developing the conventional
finite element stiffness matrix.

To define a stress wave problem for the SWIS code, the fclklwing quantities are required (Frazier
1974, pp 11-12.*



1. Coordinate system designation:
a. Number of spatial dimensions to appear in the grid.
b. Orthogonal curvilinear coordinate system to be employed in the calculations.

2. Grid configuration: Although most grids can be produced using the grid generator in the code,
it is possible to supersede the generator in local regions. Grid confignration is described by:

a. Spatial location of the node points.
b. Node map to associate nodes with elements

3. Boundary conditions and applied forces: Each directional component of each node point is
assigned one of the following constraint conditions:

a. Unconstrained, with epplied body force or surface traction to form an aray of nodal forces.
b. Constrained, with nodal displacement components contirained to follow a specified time

history.
4. Material properties, described by:

a. Density.
b. Constitutive properties (P-wave and S-wave velocities).
c. Dimensionless coefficient to regulate the damping of spurious high frequency numerical

oscillations.
5. Time stepping data:

a. Start and finish times.
b. Time step, At.

6. Startirng condition-:
a. Velocity and displacement with respect to some reference frame.
b. Stress at the centroid of each element.

7. Presentation of results:
a. Element and node numbers for which results are to be printed at designated time intervals.
b. Printer plots for displaying results at designated time intervals.
c. Time histories of individual node points.
d. Pint files producing graphical displays of the computed results.

FILES USED BY SWIS

For both input and output files, SWIS uses a two part code for its file names. The first half is the
lettei "u" followed by a one or two digit code for the Fortran unit number used in SWIS. The second
half consists of a two or three letterdescription of the contents. Thus, file "u 15in" is designated as unit
15 in SWIS, and is used as the input file, and file "u8hn" is the name of unit 8 and contains the time
history for selected nodes.

Input file
To run SWIS, create an ASCII file, for unit 15 titled u I Sin. The format of this file and variable

definitions are given in Appendix A.

Output files
SWIS produces eight ASCII files that present computed displacement and velocity results in

different formats. By setting variables in input file u 15in to appropriate values, it is possible to either
suppress printing or set the time intervals for recording.

Each file can be divided into several blocks of information. A descriptive summary and format
out!ine for each of the output files is given below. Format A indicates a character string, I indicates
an integer and E represents exponential format.
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1. u8hn provides displacement time histories for specified nodes at selected time intervals.

Block 1: Problem description (A .
Block 2: Grid generation descnpuon (A).
Block 3: a. Number of time stps (16).

b. Number of degrees of freedom (16).
c. Number of nodes with recorded histories (16,
d. Time step (E12.4,.

Block 4: NoJe numbers for plot history (1117).
Block 5: Displacements for each listed node, for each time interval (8E12.4).

2. u9he contains time histories of element stress and displacement. Block 5 is printed for each
nth iteration (set in input file ul5in).

Blo'k 1: Problem description (A).
Block 2: Grid generation description (A).
Block 3: a. Nuniber of time steps (16).

b. Number of degrees of freedom and stres: components (16).
c. Number of time history elements (16).
d. Time step (E12.4).

Block 4: Element numbers for time histories (1117).
Block 5: Displacements and stress components for each element (8E1..4).

3. ulOg contains "nformation about the deformed grid. Block 6 is printed only ifa force greatr -than
0.0001 N is applied to the node. If time history nodes an. identified, both blocks 7 and 8 are printed;
if no nodes are identified, only block 8 is printed. Blocks 9-12 are printed every nth iteration (set in
input file ulSin).

Block 1 - Proelem description (A).
Block 2: Grit gneration description (A).
Block 3: a. Number of spatial dimensions [ndimt] (17).

b. 2
ndinit (17).

c. Total number of elements (17).
d. Number cf diffc.rent material types (17).

Block 4: Coordinates be ,sed in grid generation mapping (8E12.4).
Block 5: a. P-wave vet. -1v (El 2.4).

b. S-wave velot 1(E12.4).
c. De-nsity (E 12...

Block 6: a. Digit used to separate data (16).
b. Node coordinates (8E12.4).

Block 7: a. r.igit used to separate data (=10) (16).
b. Node coordinates of nodes wit) ,'vie histories (8E12.4).

Block 8: a. Digit used to separate data (=999) (16).
b. Node coordinates of node I (8E12.4).

Blot. 9: Time (E12.4).

Block 10: a. 2ndimt (17).
b. Material number (16).

Block 11: Node coordinutes of lowest node numb,. :s elements (8E12.4).
Block 12: (Displaceracnt)+(velocity)*(damping)of lowest iode number in elements (8E12.4).
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4. ullvn supplies data for plotting node vectors. Block 5 is printed for every nth iteration.

Block 1: Problem description (A).
Block 2: Grid generation description (A).
Block 3: a. Number of spatial dimensions (17).

b. 2num ber degrees of freedom (17).
c. Total number of nodes (17).

Block 4: a. Integer code used for specifying nodal constraints (I6.
b. Node coordinates (3E12.4).

Block 5: a. Time advance (E12.4).
b. Displacements and velocities (8E12.4).

5. ul2ve is supposed to provide data for plotting element vectors. Currently, no information is sent
to this file.

6. uJ31n provides displacement and velocity information for specified lines of nodes. Block 4 is
repeated for each line of nodes. Block 5 is printed for every nth iteration of the program (set in file
u 15in). In Block 5, the items b, c and d are printed for eaCi line of nodes. Furthermore, displacement
and velocities (item d) are printed for each node in the Iii te.

Block 1: Problem description (A).
Block 2: Grid generation description (A).
Block 3: a. Number of dimensions (17).

b. (Number of degrees of freedom)*2 (17).
c. Number of node linots (17).

Block 4: a. Node line number (17).
b. Number of nodes (17).
c. Node positions (8E12.4).

Block 5: a. Time advance (E12.4).
b. Node line number.
c. Number of nodes in line.
d. Displacements ad velocides for each node (8E12.4).

7. ul4div provides the divergence and curl information of the nodes specified in file ul3ln.
Information is sent to ul4div only if information is requested for lines of nodes, i.e., if data are sent
to file u I 31n. The output file has only one output format be, k, which is printed for each nth iteration
and for each specified line of nodes. Currently, u l4div is only printed for problems with two spatial
dimensions and with a rectangular mesh.

Block 1: a. Node line number (17).
b. Number of nodes in line (17).
c. Divergence and curl for each node in the line (8E12.4).

8. u16o:,; .,ummarizes analysis description, provides sumr.n.ry of control parameters, grid defini-
tion, material definition, node constraints and output specifications. Ifsodesired, u 16out also contains
the computed results for specified time intervals. The organization of this file is self-evident. An
example follows.
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Example of ul6out
1. ANALYSIS DESCRIPTION

ul5in.ld.2, one-dim prob, dt-0.01

2. CONTROL PARAMETERS

- Spatial Representation:
Number of Space Dimensions used ............. 1
Number of Degrees of Freedom psr Node ....... 1
Number of Stress Components ................. 1
Solution Coordinate Designation ............. 0
Order of Fourier Interpolation in Azimuth ... 0

- Time Control:
Number of Time Deriviatives ................. 2
Time. Step ................................... 0.0100
Starting Time ............................... 0.0000
Ultimate Time ............................... 2.0000

3 GRID DEFINITION

- Grid Generation, Designator MAPYZ - 2
Regular grid, each element 0.05 meter long

grid size: NEI 100 NEJ I NEK 1
producing: 100 elements and 101 nodes
grid growth to element: IS 0 JS 0 KS 0
grid growth begins at: IG 0 JG 0 KG 0
corner nodes of the grid exterior:
0.00 10.00

4. MATERIAL DEFINITION

- Number of Different Constituents 1
MAT DENS P-VEL S-VEL POIS DAMP

1 2.7000 6.3000 3.1000 0.3403 0.0000
- Material Numbers Assigned to Individual Elements

Lines of Data 0

5. NODE CONSTRAINTS

- Lines of Constraint Data 2
NODE IONODE SPECIFIED CONSTRAINTS

1 1 0.0000 0.0000 0.0000 0 0
101 0 1.0000 0.0000 0.0000 0 0

6. OUTPUT SPECIFICATIONS

- Print Results at Interval ......... 0
- Plot Deformed Grid at Interval .... 0
- Plot Node Vectors at Interval ..... 0
- Plot Element Vectors at Interval .. 0
- Plot ( 0) Node Lines at Interval .. 0
- Plot Time Histories of ( 5) Nodes:

21 41 61 61 101
- Plot Time Histories of ( 0) Elements:

NODE F T P BOUND INITIALIZATION SUMMARY R P T M
O Y R TYPE ---------------------- A R Y A
R P I 1 SPECIFIED CONSTRAINTS NODE COORDINATES MASS N I P T
CEN 12 GNE
E T 1 2 3 Sl S2 S3 l Y2 Y3 E T

1 1 0 0 0 0 1 0.000 0.000 0.000 0.00 0.00 0.00 0.13 1 0 0 1
101 2 0 2 0 0 0 1.000 0.000 0.000 10.00 0.00 0.00 0.14

MOTION AT TIME - 0.0100 (time step - 1)

ODE BND ........... DISPLACEMENT ................... VELOCITY COMPONENTS ...........
21 0 0.0000E+00 0.OOOOE+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.
41 0 0.00005+00 0.0000E+00 0.00009+00 0.00009+00 0.0000E+00 0.0000E+00 0.
61 0 0.0000E 00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.OOOOE+00 0.
81 0 0.0000E+00 0.0000E+00 0.00005+00 0.00005+00 0.00005+00 0.0000E+00 0.

101 0 0.7407E-03 0.0000+E00 0.0000E+00 0.7407E-01 0.0000E00 0.0000E+00 0.
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SELECTED EXAMPLES

To test the SWIS code, stress waves were calculated for three wave propagation problems: one-
dimensional longitudinal displacement subjected to impulse loading; a cantilever be m with an
irnpulse load applied along the axis, at the unsupported end; and two-dimensional wave propagation
with a vertical impulse force (Lamb's problem). The input files and results for these test calculations
follow.

Example 1: One-dimensional longitudinal displacement

Analytical solution
The first problem considered was that of one-dimensional stress longitudinal displacement, i.e.,

only displacements in the x-direction were allowed. This situation describes the wave propagation in
the middle of a large piece of material, rigidly constrained at one face and with a uniform pressure
applied impulsively at the other (see Fig. 1). The material is allowed to move only in the direction of
the applied force, and as a result, all other displacements vanish. The equations of motion, initial
conditions and boundary conditions reduce to the following one-dimensional problem:

a2u I a2u (1)

aX2  C2 at 2

initial conditions: u (x a u) = !t (x, 0) = 0

boundary conditions: u (0, t) = 0

P(t,t)= P8(t)

where u = displacement
t = time
x = position along beam

c, = [(;,+i)/p] /2, the longitudinal or P-wave velocity
P = magnitude of the .;onstant pressure

8(t) = delta function
t = length of the beam.

Applie UnhfoM

IFi r ae Figare 1. Geometryfor example1, one-dimensional
x-O x!10 N stress, longitudinal displacement.

p = material density.

The solution to eq I can be found by either a separation of variables or by using transforms. The
latter technique gives the solution as (Graff 1975, pp. 91-94)
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u(X, t) =-E [H <t - A>-H~t-('5iA>l
PCi 1  1C

Cl Cl jH~- >-Hl<t- > +
Cl Cl

IH<t c >"ct > .... )

where H <t -a > is the Heaviside function, defined such that

H~ i-a>= 0, t < a
H~t->= { 1, t>a

Equation 2 defines a square wave propagating between the two ends of the material, with waive
speed equal to the longitudinal wave speed.

Input file
The mesh created forthis example was astring of 201 nodes, lined in thex-direction, which ceated

200 line elements (Fig. 2). Since displacement is restricted to only the x-direction, it is unnecessary
to create a three-dimensional mesh. If the material is aluminum, values forelemnent length, time step,
material properties, magnitude of the impulse and dimensions of the region are as follows:

time step (At): DT = 0.005 (ms)
density (p): DENS(l) = 2.70 (Mgm 3)
P-wave velocity (c): VP(l) = 6.30 (km/s)
S-wave velocity (c): VS(I) = 3.10 (km/s)
damping: DAMP(1) = 0.0
impulse force (P): VSPEC(2,l) = 1.0 (N)
length of region (1): YGRID(1,2)-YGRID(1,l) =10.0 (m).

1234 5 6 201

1234 200 P(t

Figure 2. Finite element mesh for one-dimensional stres problem (200 ele-
ments, 201 nodes).

For this problem, node I was assigned zero displacement to meet the fixed end condition (line 13
of the following file). A unit impulsive force was applied tothe freeend of the beam, node 201, at time
t = 0 line 14). Finally, records ofthe displacements were made for five nodes along the beam: 41, 81,
121, 161 and 201 (line 17). The input file for this example follows (entries correspond to Appendix A).

LiM ne

A I Test input, one-dim prob, dt=0.005 ms
B 2 1 1 0 0
C 3 2 0.005 0 10
D 4 Regular grid, each element 0.05 m long
E 5 200 0 0 2 2 0 0 0 0 0 0
F 6 0.0 10

7



EntryLine
G 7 0
I 8 0
K 9 1
L 10 1 2.70 6.30 3.10 0.0
M 11 0
0 12 2
P 13 1 1 0 0 0 0 0

14 201 0 1.0 0 0 0 0
R 15 1 0 0 0
S 16 0 0
U 17 5 41 81 121 161 201
V 18 0 0

0

.. 5
M

x-4 N x-z4

0

I S I. ...

-0 2 4 6 8 10 0 2 4 6 8 10
Time, ms Time, mns

a. Analytical solution. b. SWIS (dx = 0.05 m; dt = 0.005 s).

Figure 3. Comparison of analytical and SWIS waveforms calculated for example 1.

Comparison of output to theory
The disturbance for the given parameters should be a square wave reflecting between the two ends

ofthe material, at the longitudinal velocity of 6.3 kn/s. Figure 3 shows that the expected and calculated
waveforms match.

One of the shortcomings of the SWIS solution is the large, unrealistic amount of ringing in the
results. Much of this oscillation has been eliminated from previous runs by decreasing both the element
size and time step (Fig. 4). It is expected that the solution could be further refined by additional
reductions in the spatial and time increments.

Another possible way of reducing the oscillations and removing the high frequency noise in the
figures would be to introduce a damping factor with the material parameters. Figure 5 shows that a
damping factor of 0.2 significantly removes the oscillations in Figure 3b, and the solution using this
damping factor closely resembles the analytical solution. This method may have adverse effects on
the solution, however, in that the higher damping factors change the form of the calculated waves. As
seen in Figure 5, the solutions obtained using non-zero damping factors have slightly rounded comers
and finite rise times. However, the damping factors considered did not seem to affect the amplitude
of the wave, nor did they change the velocities at which the disturbances travel.
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X= 10 X= 10

X=4

SZ=2X2

__ _ _ __ _ ~x=6

0 4 8 0 4 8
Time, ms Time, ms

a. dx = 0.10 m, dt =0.01 s. b. dx = 0.10 m, dt 0.005 s.

-P x=6

. x=2

I I I I I I

0 4 8
Time, ms

c. dx = 0.05 m, dt = 0.005 s.

Figure 4. Comparison of different space and time steps for example 1. The above plots
use the same vertical scale.

Example 2: Cantilever beam

Analytical solution
The second example considered was that of a wave propagating along a long and very thin rod, or

one-dimensional stress where the longitudinal normal stress ax is a function of position along the rod
and time only (Fig. 6). All other stresses vanish, and elements are allowed to deform in the transverse
direction. The equations of motion reduce to

a2 u  a2 u

X 2 Cb2 at



f - X= 10 z= 10

X=8 ~ F . J \X=8

x=6 . r- x=6

F- __- x--- ---- L_.=- z=4

.--- _.X_2 -- -J L.j-. X=2
I I I I I I I I I I I I,

0 4 8 0 4 8
Time, ms Time, ms

a. Damping = 0.2. b. Damping = 0.4.

X= 10

• x=8

~ x=6

x=4

x=2

0 4 8

TMe, ins

c. Damping = 0.6.

Figure 5. Damping effects on one-dimensional model (example 1). The above plots
use the same vertical scale (dx = 0.05; dt = 0.005 s).

I P8(t)

Ix-axis

x-O x-1O

Figure 6. Geometry of wave propagation for example
2, a cantilevered beam.
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2wherec 2 = E., the beam velocity

E (3X+2 t)/(X+t)], Young's modulus of elasticity

p = material density.

With no initial displacements nor velocities along the beam, and boundary conditions of u(O,) =

0 andP(l,t) =P(t), the solution to this problem is almost identical to the previous problem. The only
difference between the two solutions is the velocity at which the wave propagates through the beam
(Cb < cl). Manipulation of the relations between the material constants yield the following relation for
Cb in terms of the longitudinal and transverse velocities

2 [(,1.52 2 C)/( - C2)]., (4)

Laplace transform techniques (Graff 1975, pp. 91-94) give the solution to the problem as

Cb Cb I

H< t - > ><t > +
Cb Cb

Cb Cb (5)

where u = displacement
P = magnitude of the load
p = material density

Cb = beam velocity
I = length of the beam
t = time

x = position along beam
H<t-a> = Heaviside step function, defined in the previous example.

The solution to eq 3 is a square wave propagating between the ends of the material at the beam
velocity. Because the beam velocity Cis less than the longitudinal velocity cl , this wave travels slower
than the wave in example I. The amplitude of the resulting wave, however, is larger than that of the
previous example. A plot of displacement versus time, for five points on the beam, is given in Figure 8a.

Input file
This example differs from the longitudinal displacement problem because the nodes must be

allowed to move in the transverse directions (because of the Poisson effect). A one-dimensional mesh
is not capable of handling these displacements, and'so either a two- or three-dimensional grid must be
used. To reduce computation time, a two-dimensional mesh was created (Fig. 7) to model an aluminum
beam. The parameters for this example follow.

time step (At): DT = 0.005 (ms)
density (p): DENS(l) = 2.70 (Mg/in3)
P-wave velocity (c1 ): VP(l) = 6.30 (km/s)

11



S-wave velocity (r): VS(l) = 3.10 (kn/s)
beam velocity (C): cb = 5.1 (kn/s)
damping: DAMP(1) = 0.0
impulse force (P): VSPEC(2,1) = 1.0 (N)
length of beam (1): YGRID(I,2) - YGRID(I,1) = 10.0 (m).

(0,+0.05) (10,+0.05)
403 o603- PS(t)

2220112223 20412051 0-
1 . . . . . . e-201 -4- P8 (t)

(0,-0.05) (10,-o.05)

Figure 7.Finite element mesh ofbeam problem (400 elements, 603 nodes).
Impulse force applied at nodes 201, 402 and 603; nodes 1,202 and 403

For this example, thedisplacements forthe nodes atx = 0, nodes 1,202 and 403, were set identically
equal to zero (lines 13, 15 and 17 of the following input file). At the free end of the beam, a unit impulse
was applied in the direction of the beam axis (lines 14, 16 and 18 of the following input file). The
longitudinal displacements were recorded for five nodes located on the center fiber of the beam (line
22) (entries correspond to Appendix A).

Entgy Line
A 1 2-d model of beam, dt=0.005 ms
B 2 2 2 0 0
C 3 2 0.005 0 10
D 4 Regular elements, 0.05 x 0.05 m long
E 5 200 2 0 2 4 0 0 0 0 0 0
F 6 0.0 -0.05 10.0 -0.05 0 0.05 10.0 0.05
G 7 0
I 8 0
K 9 1
L 10 1 2.70 6.30 3.10 0.0
M 11 0
O 12 6
P 13 1 11 0 0 0 0 1

14 201 00 1.0 0 0 0 1
15 202 11 0 0 0 0 1
16 402 00 1.0 0 0 0 1
17 403 11 0 0 0 0 1
18 603 00 1.0 0 0 0 1

R 19 0 0 0 0
S 20 0 0
U 21 5 202 252 302 352 402
V 22 0 0

Comparison of output to theory
A plot of displacement versus time, as calculated by SWIS, for the above input file is shown in

Figure 8b. SWIS calculates a waveform with a shape and velocity close to that of the analytical
solution. As in the case of the one-dimensional strain example, it is expected that refining the input
mesh and decreasing the time step could further improve the results.
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dampngO.0

X-10O . X=to

x-7.5 * - ~ .P x=7.5
E

is ,X=5 X=5

0

0 x-2.5 z=2.5

x-0 X=O
I ... I ! I I I

I I I I . IJ

-0 2 4 6 8 10 0 4 8
Time, ms Nnr,, MS

a. Analytical solution. b. SWIS (dx = 0.05 m; dt= 0.005 s).

Figure 8. Comparison of analytical and SWIS waveforms calculated for example 2.

m. damping=0.2 b. dcamping=O.4

X=5x=2.5

0 2 4 C B to 0 2 to 6 e 0

TRme, ms TNme, ms

Figure 9. Damping effects on beam. Plots use the same vertical
scale (dx - 0.05 m; dt = 0.005 s).

Applying a damping fictor again removes much of the oscillations (Fig. 9). A factor of 0.2,
however, already seems to modify the solution in that the waveform is no longer a square wave.
Increasing the damping factor from 0.2 to 0.4 removes more of the high frequency components, but
results in only a small change in thesolution. Forthesedampingfactors, littleornoreduction is noticed
in the amplitudes or the wave velocities.

Example 3: Lamb's problem in two-dimensional Cartedan coordinates
The third example treated the two-dimensional Lamb's problem, a vertical point load applied

impulsively in the plane of the grid (Fig. 10). The results from this example were compared to the
waveforms generated by other computing schemes.
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S{,)

Figure 10. Example 3, geometry of

x. o0 Lamb's problem.

Input file

No-displacement constraints were applied to the vertical sides of this mesh so that the waves would
reflect off of the sides. To compare the solution from SWIS to other models (Kuhn 1985, p. 1112), the
following parameters were used:

time step (At): DT = 2 (ms)
ending time: TMAX = 400 (ms)
density (p): DENS = 1.0 (Mg/m ")
P-wave velocity (C): VP = 1.00 (kn/s)
S-wave velocity (ct): VS(1) = 0.60 (kn/s)
impulse force (P): VSPEC(2,l) = 1.0 (N).

For this problem, SWIS was run with several input files to observe the effect of the damping factor
and to get information for different types of plots. For all of the input files, however, the mesh used
was a two-dimensional grid with rectangular elements, each 3 by 3 m. The mesh bad 70 elements in
each direction, and had a total of 5041 nodes. A vertical force was applied at the left upper comer of
the mesh (node 4971) and the vertical sides of the grid were constrained so that these nodes had no
horizontal movement (Fig. 11).

The file shown below was run to obtain information for a contour plot. For every 10 time steps (20
ins), data were recorded for 15 strings of nodes (line 17 of the input file), each string containing 15
nodes (lines 18-32). The damping factor in this run is 0.2 (last entry in line 10) (entries correspond to
Appendix A).

4971 9 o 5 041

00 S 0

0 0 0

1

Figure 11. Finite element mesh used for Lamb's problem.
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Entry Line
A 1 Lamb's problem, dr=-2 ms, tmax=400 ms
B 2 2 2 0 0
C 3 2 2 0 400
D 4 each element 3 x 3 m, total grid 210 x 210 m
E 5 70 70 0 2 4 0 0 0 0 0 0
F 6 0 -210 210 -210 0 0 210 0
G 7 0
1 8 0
K 9 1
L 10 1 1.00 1.0 0.6 0.2
M 11 0
0 12 3
P 13 1 10 0.0 0.0 0.0 69 71

14 71 10 0.0 0.0 0.0 70 71
15 4971 10 0.0 1.0 0.0 0 1

R 16 0 0 0 0
S 17 15 10
T 18 4971 14 5

19 4616 14 5
20 4261 14 5
21 3906 14 5
22 3551 14 5
23 3196 14 5
24 2841 14 5
25 2486 14 5
26 2131 14 5
27 1776 14 5
28 1421 14 5
29 1066 14 5
30 711 14 5
31 356 14 5
32 1 14 5

U 33 0
V 34 0 0

Discussion of output
To evaluate the results, horizontal and vertical displacements and velocities were plotted against

time (Fig. 12 and 13) and contour plots of the displacements (Fig. 14) were produced. The range and
depth scales for Figures 12 through 14 were chosen to match those of Kuhn's (1985) figures. It is
important to note that the plots in Figure 14 may contain some artifacts attributable to the automatic
contouring algorithm. For example, the contour plot of the horizontal displacement at 80 ms (Fig.
14al) indicates zero displacement at about 108 m. This particular contour line is not part of the wave
front, but a result of the automatic smoothing in the contouring algorithm. Despite the artifacts,
however, it is relatively easy to identify the wavefronts in the contour plots. The contour lines of
interest are grouped closely to each other, and compose the "steep" portions of the mapping.

The plots of horizontal and vertical displacement in Figure 12 show the disturbance propagating
through the material. Since the wave velocities for the material are known, it is possible to determine
the arrival of each wave front. For example, on tlit 130-m trace of horizointal displacements in Figure
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Figure 13. Horizontal and ,ertical surface velocities
vs time for example 3 (dr = 3 m; dt = 2 ms; damping
= 0.2).

12a, a disturbance arrives at approximateiy 180 ms. This corresponds to a velocity of 1 ki/s, and
implies that the disturbance is a pressure wave. A second wave front reaches the 180-rn range at
approximately 300 ms, has a velocity ofabout0.6kin/s, andcouldbe eitherthe shearorRayleigh wave.
Figure 13, a plot of horizontal and vertical surface velocities against time, also shows the propagation
of the three waves. Finally, notice that the waves are non-dispersive. This agrees with theory, since
the example models a non-layered half-space.

The Nyquist frequency, or the highest frequency that can be monitored owing to the sampling time
step, isfN = l(2At) = 1/(0.004 s) = 250 Hz. From Figure 12, the period of the Rayleigh wave is
approximately 45 ms, and corresponds to a dominant frequency of 22 Hz. This is an orderof magnitude
smaller than the Nyquist frequency, and so it is reasonable to expect that the Rayleigh wave is well
represented in the plot.

The displacement contours in Figure 14 yield results consistent with theory. Fir'A, there are no
horizontal displacements directly beneath the source (x = 0-rn axis), a constraint set in the input file.
Disturbances at the depths of 80 and 160 in are observed on thex = 0 axis of the vertical displacement
contour plots at 80 and 160 ms respectively. These disturbances traveled at a rate of 1 kin/s, and
probably correspond to the pressure wave. The second disturbance, the combined effect of the shear
and Rayleigh waves, is obsbrved near the range of 48 m on the 80-ms plot and at about 96 in on the
160-ms plot. Finally, the displacement magnitudes, especially in the horizontal displacement contour
plots, fall away to zero with increase in depth and indicate the presence of a Rayleigh wave.

Since the compressional energy and shear energy are proportional to the squares of the divergence
and curl of displacement, respectively (Dougherty and Stephen 1987, p. 242), contour plots of the
divergence and curl were created to better observe the arrival of the various wavefronts at t = 80 and
160 ms. The equations used to find divergence and curl are given in Appendix B.

The contour plots of the divergence and curl facilitate observation of the wave fronts. The
divergence contour plots show the pressure wave front as being almost spherical. Disturbances from
shear waves and surface waves are present on the curl contour plots, but it is difficult to distinguish
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Figure 14. Contour plots of displacements and divergence and curl of displacenientsfor example 3.
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Figure 14 (cont'd).
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between the two waves at the surface of the material since the wave speeds are almost equal. At a depth

greater than 18 m, however, the Rayleigh wave displacements fall away, and only the shear wave
remains.

Computation time
On the ILLIAC computer, Frazier (1974, p. 65) estimated that the calculations were processed that

the rate of 0.4 ms per two-dimensional element per numerical time step. With 200 time steps, and 4900
elements (5041 nodes), each of the runs took approximately 30 minutes of real time on a Masscomp
5550, a 32-bit computer running at 20 MHz. At this rate, the computer processes at approximately 1.8
ms per element per numerical time step.

Damping factor
Frazier, when using SWIS, used different damping factors for the longitudinal and transverse

waves. It is not apparent, however, how he specified the two factors in the input file as our version of
the code does not allow this option. At this point, the magnitude required to reduce only the high
frequency noise resulting from numerical dispersion has not yet been determined. A value of 0.2 does
not seem sufficient because the source wave oscillates much more than what has been observed in both
field work and other mathematical models. Damping factors. . to 0.4 and 0.6 reduced the amount of
oscillation, but also damped the results. Finally, a value of 0.8 caused the disturbance to die out almost
immediately.

Comparison with other models
Kuhn (1985) also conducted a study of Lamb's problem in two dimensions. He used the same

material parameters and numerically integrated the analytical solution. In his work, however, Kuhn

7

t= loops
6- Numerical

Analytc
0 1 5- (Una Load, Delta
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Figure 15. Horizontal and vertical ve- Figure 16. Vertical displacement time history calcu-
locities (mis) calculated by Kuhn (after lated by Frazier (after Frazier 1974, p. 67, his Fig.
Kuhn 1985, p. 1114, his Fig. 6a). 4.2), damping = 0.8.
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used a different approximation for the P S RaywIo

impulse force, solved the problem in cy- i I I
lindrical coordinates and used a mildly - ,n* u, (r, 0. )
viscoelastic material for his half-space.
These results are shown in Figure 15.
Kuhn's figure shows surface velocities,
and contains two records of 16 traces
each, with ranges varying from 0-180 m.
The middle column of numbers repre-
sents gain, which is constant along each U, (ro.t)
trace, and allows the comparison of abso- W
lute amplitudes between different offsettraces. Figure 17. Horizontal and vertical displacements calcu-In all of his calculations, Kuhn used lated by Lamb (after Graff 1975, p. 369, his Fig. 6.21).

only one source function, which had a
dominant frequency of about 20 Hz (Kuhn 1985, p. 1108). Because he solves Lamb's problem by
numerically computing the analytic integral solution, his waveforms are much cleaner and it is easier
to distinguish between the different waves. It is difficult to see the similarities between our solution
(Fig. 13) and Kuhn's (Fig. 15) because the finite element results contain much noise, resulting from
numerical dispersion. However, the waves arrive at approximately the same time, and the initial forms
of the waves are similar.

Frazier (1974, pp. 65-74) used Lamb's problem in a two-dimensional Cartesian coordinate system
to evaluate the SWIS code written for the ILLIAC computer. As mentioned in the section above,
Frazier was able to specify different damping factors for the various waves. He also investigated the
effectiveness of transmitting boundary conditions, an option that is not available on our version of
SWIS. Finally, Frazier used different parameters for his calculations, including a different material,
smaller time and space steps, and a different force. Since the parameters are so different from those
in our model, our comparison is limited to the form of the displacements (Fig. 16).

As a final comparison, we considered the calculations of Lamb (Graff 1985, p. 369). In his analysis
of the half-space problem, he used a line loading with a time variation of

where -z is a constant. If r is small, Z(t) describes a sharp impulse. Lamb's results for the horizontal
and vertical surface displacements from the above loading are shown in Figure 17. The time .and
amplitude scales are not included in this figure, but the first disturbance shows the arrival of aP-wave,
the second corresponds to the S-wave, and the major response is ascribable to the arrival of the
Rayleigh wave.
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APPENDIX A: FORMAT FOR INPUT FILE ulin

Listing
A. HED
B. NDIMT NDFNT MAPXY NFOUR
C. NDBYDT DT TMIN TMAX
D. GRIDH
E. NEI NEI NEK MAPYZ NBNODES IS JS KS IG JG KG
F. ((YGRID(NDIM,NBN)NDIM=I,NDIMT)NBN=INBNODES)
G. NNCRDC (if NNCRDC=O, go to !)
H. for NC=l to NNCRDC:

NODEC(NC) (Y(INC),I=l,3) (DELY(INC),I=l,3) NANCRD(NC) IANCRD(NC)
1. NENNC (if NENNC=O, go to K)
J. for NC=I,NENNC:

NELN(NC) (NODEE(NNC),N=lNNET) NAEL(NC) IAEL(NC) IANE(NC)
K. NMAT
L. for N=l,NMAT:

MAT DENS(MAT) VP(MAT) VS(MAT) DAMP(MAT)
M. NEMATC (if NEMATC=0, go toO)
N. for NC=INEMATC:

NELM(NC) NEMAT(NC) NAEMAT(NC) IAEMAT(NC)
0. NNBCC (if NNBCC=0, go to Q)
P. for NC=1, NNBCC (if NODEB(NC)>O, go to R)

NODEB(NC) NBTYPE(NC) (VSPEC(I,NC),I=l,3) NANBC(NC) IANBC(NC)
Q.(BCDIR(NCOMP,NAXIS,NC),NCOMP=.1,3) NAXIS=l,2)
R. INTPRT INTPG INTPNV INTPEV
s. NPLTNL INTPNL (if either=O, go to )
T. for NL= 1,NPLTNL:

NDLN(NL) NANLN(NL) IANLN(NL)
U. NTHPTS, (NNPRT(I),I=l,NTHPTS)
V. NTHELM NEPRT(1),I=I,NTHELM

Definition of entries

Entry formats are noted in parentheses (A = character string; I = integer, and E = exponential
format).

A. HED
(A) A character string used to describe the problem; to be used as a heading on output. An example

is:
Input file for uniform material-2D with point source at surface.

Be sure to leave a space as the firstentry so the first letterdoesn't get read as a carriage control character.

B. NDIMT NDFNT MAPXY NFOUR
NDIMT: (I5) the number of spatial dimensions (1, 2 or 3).
NDFNT: (15) the number of degrees of freedom per node.
MAPXY: (15) designates the type of spatial operator, choices are as follows:

For uniform, rectilinear grid in Cartesian coordinates, MAPXY = 0.
For non-uniform, skewed grid in Cartesian coordinates, MAPX = I.
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For non-uniform, skewed grid in Cartesian coordinates, and to store stresses for non-linear
constitutive, MAPXY = 2.

For cylindrical coordinates (r,z) with harmonic interpolation in azimuth, MAPXY = 5.
NFOUR: (15) Fourier azimuthal order in cylindrical coordinates.

If MAPXY=5, NFOUR = 0.

C. NDBYDT DT TMIN TMAX
NDBYDT: (I5) the number of time derivatives in the partial differential equation:

For static problem, NDBYDT=O.
For diffusion, NDBYDT=I.
For wave propagation, NDBYDT=2.

DT: (F10.4) grid size in time. DT should be less than the space grid size divided by the longitudinal
wave (P-wave) velocity.

TMIN: (FlO.4) starting time.
TMAX: (F10.4) ending time (number of time increments = TMAX/DT).

D. GRIDH
(A) A description of the grid generation. As with HED, leave a space for the carriage control character.
An example for an entry is:

Regular grid, each element 10 m x 10 m, 7 km vertical by 10 km horizontal.

E. NEI NEJ NEK MAPYZ NBNODES IS JS KS IG JG KG
NEI: (15) number of elements along the I-direction of a block of elements.
NEJ: (15) number of elements along the J-direction of a block of elements.
NEK: (15) number of elements along the K-direction of a block of elements.
MAPYZ: (I5) designates the mapping from the curvilinear problem.

For identity mapping, MAPYZ = 0.'
For bi-quadratic mapping, MAPYZ = 2.
For cylindrical coordinate mapping, MAPYZ = 3.
For spherical coordinate mapping, MAPYZ = 4.

NBNODES: (I5) number of nodes that are specified along exterior comers of the grid (NBNODES
= 4 is a typical entry).

IS, JS, KS: (15) starting numbers for expanding the grid size at 10% per zone. Grid elements less
than IS, JS and KS are progressively expanded.

IG, JG, KG: (15) starting numbers for expanding the grid size at 10% per zone. Grid elements
greater than IG, JG and KG are progressively expanded.

F. ((YGRID(NDIMNBN)NDIM=I ,NDIMT),NBN=I ,NBNODES)
YGRID(NDIM,NBN): (F10.4) coordinates of the nodes at the exterior comers of the grid, specified

in the order:
For Imin, Jmin, Kmin, NBN = 1.
For Immx, Jmin, Kmin, NBN = 2.
For 'min, Jmw, Kmin, NBN = 3.
For lmax, Jmax, Kmin, NBN 4.
For min, Jmin, Kma,, NBN 5.

* MAPYZ = 0 is not operational; use MAPYZ = 2 for identity mapping.
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For Ia x, Jmin, Kna,, NBN = 6.
For Imin, Jnx, Knm, NBN = 7.
For I Jax.Ja, KMj x , NBN = 8.

Supply NBN's depending on the dimensionality of the problem:
For a one-dimensional problem, NBN = 1-2.
For a two-dimensional problem, NBN = A-4.
For a three-dimensional problem, NBN = 1-8.

For a two-dimensional problem, 5000 units along the top and 6000 m deep, an entry could be (the
numbering used for generating the grid need not align with the coordinate axes, Y1,Y2,Y3):

0.0 -6000.0 5000.0 -6000.0 0.0 0.0 5000.0 0.0
For cylindrical coordinates, enter the radius first, and then the angle in radians. To specify a full circle
(211 radians) with radius of 10, the entry would be:

0 0 10 0 0 6.2832 10 6.2832

G.NNCRDC
(IS) number of lines (sequences) of data used to supersede nooe coordinates. If NNCRD = 0, skip

to entry I.

H.NODEC(NC) Y(I,NC) (DELY(INC), I = 1,3) NANCRD(NC) IANCRD(NC)
OPTIONAL. Specify node sequence only if NNCRDC>0!
Complete for NC = I to NNCRDC:
NODEC(NC): (I5) first node number of sequence on line NC.
Y(I,NC),I = 1,3): (3F10.4) coordinates of node number NODEC(NC).
(DELY(I,NC),I = 1,3): (3FI0.4) increment to be added to the node coordinates for generating

additional nodes in the sequence.
NANCRD(NC): (15) number of additional nodes in sequence NC.
IANCRD(NC): (15) increment to be added to the node numbers to identify subsequent nodes in

sequence NC,

I. NENNC
(15) number of sequences (lines) of data used to supersede node numbers associated with individual

elements. SET NENNC = 0 and go to entry KI

J. NELNV(NC) NODEE(N,NC) NAEL(NC) IAEL(NC) IANE(NC)
If NENNC = 0, do not enter values. Currently, the code only reads, and does not process these

variables.

K. NMAT
(IS) number of materials being specified. 1 : NMAT <9.

L. MAT DENS(MAT) VP(MAT) VS(MAT) DAMP(MAT)
Specify properties for each material, N = 1 to NMAT.
MAT: (15) material number, 1 < MAT 9.
)ENS(MAT): (F10.4) mass density for material number MAT.
VP(MAT): (F10.4) P-wave velocity for material number MAT.
VS(MAT): (F10.4) S-wave velocity for material number MAT.
DAMP(MAT): (F 10.8) dimensionless damping coefficient to suppress high-frequency amplitudes

from numerical dispersion.
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M.NEMATC
(15) number of assignment sequences; assigns material numbers to elements. NEMATC=O for a

uniform material. If NEMATC = 0, skip to entry 0.

N. NELM(NC) NEMAT(NC) NAEMAT(NC) IAEMAT(NC)
Do not enter values if NEMATC = 0 (uniform material). Enter values for NC = I to NEMATC.
NELM(NC): (110) first element in sequence NC.
NEMAT(NC): (110) material number for sequence NC.
NAEMAT(NC): (110) number of additional elements in sequence NC.
IAEMAT(NC): (110) increment in element number for identifying subsequent elements in the

sequence.

0. NNBCC
(15) number of sequences used to constrain nodes. The number of different "boundary conditions,"

such as applied forces or displacements, or both. If NNBCC = 0, go to entry Q.

P. NODEB(NC) NBTYPE(NC) VSPEC(INC)J=1,3) NANBC(NC) IANBC(NC)
Used to specify constraints; enter values for NC=l to NNBCC.
NODEB(NC): (I10) first node in sequence NC. To apply a rotation to a node, enter the negative

of the node number.
NBTYPE(NC): (110) multi-digit constraint code for interpreting components of the values

specified by VSPEC(I,NC). The ones digit of NBTYPE pertains toI =NDFNT; the tens digit pertains
to I = NDFNT-1, etc. The individual digits are interpreted as follows:

0: VSPEC is an applied force.
1: VSPEC is an applied displacement.

Thus, for NDFNT = 2, NBTYPE = 00010 indicates:
VSPEC(1 ,NC) = displacement assigned to component #1.
VSPEC(2,NC) = force applied to component #2.

Whereas, for NDFNT = 3, NBTYPE = 00010 indicates:
VSPEC(1,NC) = force applied to component #1.
VSPEC(2,NC) = displacement assigned to component #2.
VSPEC(3,NC) = force applied to component #3.

(VSPEC(I,NC),I = 1,3): (3F10.4) the value for the Ith component of the force or displacement (as
specified by NBTYPE).

IANBC(NC): (110) increment in node number for the subsequent nodes.
If NODEB > 0, go to entry R.

Q. (BCDJR(NCOMP,NAXIS,NC), NCOMP=J ,3), NAXIS=J,2)
(F1O.4) used to specify rotations, but not fully operational; vectors to specify rotated directions for

degree of freedom NCOMP with respect to axis NAXIS.

R. INTPRT INTPG INTPNV INTPEV
Used to specify print control. Set the value = 0 to suppress the plot.
INTPRT: (15) interval between time steps for printing computed results to unit 16, file 'ul6out'.

Set INTPRT < 0 to plot intermediate values.
INTPG:. (I5) interval between time steps for plotting deformed grid to unit 10, file 'ul0g'. Set

INTPG < 0 to plot only the undeformed grid.
INTPNV: (15) interval between time steps for plotting node vectors to unit 11, file 'ul lvn'.
INTPEV: (15) interval between time steps for plotting element vectors to unit 12, file 'ul2ve'.
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S. NPLTNL INTPNL
Plot along specified lines of nodes (sends output to unit 13, file 'u 131n' and unit 14, file'u l4div').
NPLTNL: (15) number of node lines (set NPLTNT = 0 to suppress plots).
INTPNL: (15) interval between time steps (set INTPNL = 0 to suppress plots).
If either NPLTNL or INTPNL = 0, go to entry U.

T. NDLN (NL) NANLN(NL) IANLN(NL)
Specify lines of nodes to plot displacement; enter values forNL = 1,NPLTNL. Do not enter values

if NPLTNL = 0.
NDLN(NL): (110) first node number in the line NL.
NANLN(NL): (110) number of additional nodes in the line.
IANLN(NL): (I0) increment in node number along the line.

U. NTHPTS, (NNPRT(I), I = 1,NTHPTS)
Used to plot time histories of node displacement to unit 8, file 'u8hn'.
NTHPTS: (I10) number of nodes for which time histories are to be plotted.
(NNPRT(I),I = 1,NTHPTS): (110) node number for plot history. No entries are needed if

NTHPTS =0.

V. NTHELM (NEPRT(I), I = JNTHELM)
Used to plot time histories of element stress and displacement to unit 9. file 'u9he'.
NTHELM: (110) number of elements for which time histories are to be plotted.
(NEPRT(I),I = 1,NTHELM): (110) element number for plot history. No entries are needed if

NTHELM = 0.
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APPENDIX B: CALCULATION OF DIVERGENCE AND CURL

SWIS was modified so that the divergence and curl would be calculated for a two-dimensional
problem in rectangular coordinates. The following discussion applies to this specific case only.

For the two-dimensional case, divergence and curl are defined by:

divergence (x) = I + u2ax ay
curl (x) = au2-2 - Il

ax ay

where x = position
u = displacement inx-direction
U2 = displacement in y-direction.

The divergence and curl were calculated using finite differences. The values for the comer nodes
were calculated using forward differences for both directions; edge node values resulted from a

forward diffrence for the direction perpendicular to the edge and a central difference along the edge;

and values Zor nodes in the middle of the mesh were calculated using central differences in both

directions.
In general, the forward and central differences for a partial derivative are given by (Abramowitz

and Stegun 1972):

Forward: = 0 [10- o0o 0(h)
ax h +

Central: a00 [,I- f +f,, I+ ,f. +0h

ax 4h I

where h is the distance between the sampling points, andfij is the value of the function at the (ith,jth)

sampling point. These finite difference formulas use equally spaced sampling points, as shown in

Figure B 1. Fora grid with non-uniform spacing, the difference in coordinates must be used instead of

the valu. '.

(0.0) (1.0)____

a. Forward time dif- b. Centralfinitedifference
ference sampling (two sampling (four points).
points).

Figure B1. Sampling pointsforfinite difference finulae.
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Nine different sets ofdivergence andcurl formulae wcre used forthe two-dimensional, rectangular
mesh. Each of the four corner nodes required a set of formulae, as did the nodes on each of the four
sides of the mesh. The final set was written for the iiod-.s in the center of the mesh.

For the following equations, variable definitions are given as:

nnl: node number
nei: number of elements in the x-direction of the mesh
diver(nn): divergence at node nn
curl(nn): curl at node nn
disp(i,nn): displacement in the ith direction of node nn
ynode(i,nn): coordinate in the ith direction of node nn

Node locations for the following formulae are indicated on 17igure B2.

,I1l Vill IV

IXVI

Figure B2. Node locationsforfinite difference formulae (f-
lower left corner; fl-l4ower right corner; IlI-upper left cor-
ner; IV-upper right corner; V-4ower edge of mesh; VI-left
edge of mesh; VJI--right edge of mesh; Vhf1-upper edge of
mesh; IX-middle of mesh).

1. Bottom left corner [nn = 1]:

diver (nn)= [disp( 1, nn+l1) - disp( 1, nn)] [disp(2, nn+nei+l1) - disp(2, nn)]
[ynode(l, nn+l) - ynode(l, nn)] + y-node(2, nn+nei+l) - ynode(2, nn)]

curl (nn) [disp(2,nn+nei+l) - disp(2, nn)] _ disp(l, nn+ 1) - disp(l, nn)]

[ynode( 1, nn+ 1) - ynode( I,nn)] [ynode(2, nn+nei+ 1) - ynode(2,nn)]

HI. Bottom right corner [nn = nei+ fl:

diver (nn) = [disp(l, nn) - disp(l, nn-l )j [disp(2, nn+nei+l1) - disp(2, nn)]
tynode( I, nn) - ynode( I, nn-l~ )+ [ynode(2, n+nei-il) - ynodc(2, nn)]
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Curl (nn) = [disp(2, nn+nei+1) - disp(2, nin)] - [disp(1, tin) - disp(i, tin-i)]

[ynode(l, nn) - ynode(i, nn-1)I Cynode(2, nn-inei-t-) - ynode(2, wi)]

III. Top left corner [tn = nei * (nei + 1) + 1]:

diver (nn) = [disp(l, tn-i-i) - disp(l, nin)] -+ [disp(2, nn) - disp(2, nn-nei-1)J

[ynode(l, nm-I-) - yn d(1, nn)] [ynode(2, tin) - ynode(2, nnt-tiei-1)]

curl (nn) = [disp(2, nin) - disp(2, nn-nei-i)] [disp(i, nn+1) - disp(i, nin)]

[ynode(l, nn+i) - ynode(1. nin)] [ynode(2, nin) - ynode(2, nn-nei-l)]

iV;. Top right comner [nn = (nei + 1) * nei + 1)]:

diver (nn) = [disp(l, nn) - disp(l. tin-i)] .+ [disp(2, tnn) - disp(2, nts-tei-1)]
[ynode(l, tin) - ynode(1, tin-i)] [ynode(2, nin) - ynode(2, tin-nei-1)J

curl (nn) = [disp(2, nin) - disp(2, nn-nei-1)] [disp(l, tin) - disp(l, tin-I)]

[ynode(1, tnn) - ynode(l, nn-1)] [ynode(2, nin) - ynode(2, tit-nei-l)]

V. Nodes located on bottom edge of mesh [1 <tin < (tzei + 1)]:

diver (nin) = *[disp(l, nn+1) - disp(i, nn)] [disp(l, tin) - disp(l, tin-i)]
2[ynode(l, nn+l) - ynode(l, tin)] '2* [ynode(i, nin) - ynode(i, tm-i)]

+[disp(2, nn-inei+1) - disp(2, nin)]
+ ynode(2, nn+nei+1) - ynode(2, nin)]

cur (n) 2* [disp(2, nn+nei+i) - disp(2, tin)] - disp(l, nn+1) - disp(1, tin-i)]
curl ~ l n~l (t- =ndel n - 2* [ynode(2, tin+nei+ 1) - ynode(2, nn)]

VI. Nodes located on the left edge of the mesh [mod(nn, nei + 1) = 1]:

diver (nin)= [disp(i, nn+1) - disp(1, nin)] + [disp(2, nti-*nei-i-) - disp(2, nn)]
[ynode(l, tm-i-) - yn~xe(i, tin)] 2* [ynode(2, nn-inei-i-) - ynode(2, tin)]

+ [disp(2, tnn) - disp(2, tm-nci-i)]
2* ynode(2, tin) - ynode(2, nn-tiei-l)]

cul(n [disp(2, nti+nei+l) - disp(2, nn-nei-i)] 2* [disp(l, nm+1) - disp(1, tin)]
cur ~iti, 2* [ynode(1, tm+l) - ynode(i, nin)] -[ynode(2, nnt+aei-i-) - yr.ode(2, tzn-nei-1)]

VII. Nodes located on the right edge of the mesh [mod(nti, nei +i 1) = 0]:

diver (nin) = disp(i, nn) - disp(l, tin-I)] [ disp(2, tm+tiei-i-) - disp,(2, nin)]
[ynode(, I nt) - ynode( I, tin-I)] 2* [ynode(2, tin -enei-.-) - ynode(2, tin)]

+ __[disp(2, nin) -disp(2, nn-tiei-1)]
2* (ynode(2, nin) - ynode(2, nn-twi-l)]
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curl (nn) = [disp(2, nn+nei+1) - disp(2, nn-.nei-l)] 2* [disp( 1, nn) - disp( 1, nn-l)]

2* [ynocoe(l, nn) - ynode(l, nn-1)] [ynode(2, nn +nei+l) - ynode(2. nn-nei-1)I

VMI. Nodes located on the top edge of the mesh [nei * (nei + 1) + 1 <nfl < (nei + 1)21

die (n tdisp(l, nn+l) -disp(l, nn)] [disp(l, nn) -disp(l, nn-1)]

diver(nn)2* [ynode(1, nn+l) - ynode(l, nn)I +" 2* [ynode(l, nn) - ynode(l, nn-l)J

+ [disP(2, nn) -disP(2, nn-nei-lyj

[ynode(2, nin) - ynode(2, nn-nei-Il]

cur (n) 2* [disp(2, nn) -disp(2, nn-nei-Il) [disp(1. nn+l) -disp(1. nn-1)]
cul nn -[ynode(l, nn+l) -ynode(l, nn-1)] -2* [ynode(2, nn) -ynode(2, nn-nei-1)]

IX. Nodes in the center of the mesh:

[ie~n disp(1, nn+nei+2) - disp(1, nn+nei)1 [disp(l, nn-net) - disp( 1, nn-nei-2)]
divr~n) -2* [ynode~l, nn+nei+2) - ynode(l, nn+nefI 'r 2* [ynode(l, nn-nei) - ynode(l, nn-nei-2)]

[disp(2, nn+nei+2) - disp(2, nn-nei)] [disp(2, nn+nei) - disp(2, nn-nei-2)J
2* [ynode(2, nn+nei+2) - ynode(2, nn--nei)] +2* [ynode(2, nn+nei) - ynode(2, nn-nei-2)]

cr(n) [disp(2, nn+nei+2) - disp(2, nn-zei)I [disp(2, nn+nei) - disp(2, nn-nei--2)]
cur (n) =2* [ynode~l, nn+nei+2) - ynode(l, nn+netl + 2* [ynode( 1, nn-nei) - ynode(l, nn-tzei-2)J

(disp( 1, nn+nei+2) - disp( 1, nn+nei)] [disp( I, nn-nei ) - disp( I, nn-nei-2)]
2* [ynode(2, nn4-nei+2) - ynode(2, nn-nei)] 2* [ynode(2, nn+nei) - ynode(2, nn-nei-2)]
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